Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Car-following (CF) behavior is a fundamental of traffic flow modeling; it can be used for the virtual testing of connected and automated vehicles and the simulation of various types of traffic flow, such as free flow and traffic oscillation. Although existing CF models can replicate the free flow well, they are incapable of simulating complicated traffic oscillation, and it is difficult to strike a balance between accuracy and efficiency. This article investigates the error variation when the traffic oscillation is simulated by the intelligent driver model (IDM). Then, it divides the traffic oscillation into four phases (coasting, deceleration, acceleration, and stationary) by using the space headway of multiple steps. To simulate traffic oscillation between multiple human-driven vehicles, a dynamic transformation CF model is proposed, which includes the long-time prediction submodel [modified sequence-to-sequence (Seq2seq)] model, short-time prediction submodel (Transformer), and their dynamic transformation strategy]. The first submodel is utilized to simulate the coasting and stationary phases, while the second submodel is utilized to simulate the acceleration and deceleration phases. The results of experiments indicated that compared to K -nearest neighbors, IDM, and Seq2seq CF models, the dynamic transformation CF model reduces the trajectory error by 60.79–66.69% in microscopic traffic flow simulations, 7.71–29.91% in mesoscopic traffic flow simulations, and 1.59–18.26% in macroscopic traffic flow simulations. Moreover, the runtime of the dynamic transformation CF model (Inference) decreased by 14.43–66.17% when simulating the large-scale traffic flow.more » « less
- 
            The “asymmetry” between spatiotemporally varying passenger demand and fixed-capacity transportation supply has been a long-standing problem in urban mass transportation (UMT) systems around the world. The emerging modular autonomous vehicle (MAV) technology offers us an opportunity to close the substantial gap between passenger demand and vehicle capacity through station-wise docking and undocking operations. However, there still lacks an appropriate approach that can solve the operational design problem for UMT corridor systems with MAVs efficiently. To bridge this methodological gap, this paper proposes a continuum approximation (CA) model that can offer near-optimal solutions to the operational design for MAV-based transit corridors very efficiently. We investigate the theoretical properties of the optimal solutions to the investigated problem in a certain (yet not uncommon) case. These theoretical properties allow us to estimate the seat demand of each time neighborhood with the arrival demand curves, which recover the “local impact” property of the investigated problem. With the property, a CA model is properly formulated to decompose the original problem into a finite number of subproblems that can be analytically solved. A discretization heuristic is then proposed to convert the analytical solution from the CA model to feasible solutions to the original problem. With two sets of numerical experiments, we show that the proposed CA model can achieve near-optimal solutions (with gaps less than 4% for most cases) to the investigated problem in almost no time (less than 10 ms) for large-scale instances with a wide range of parameter settings (a commercial solver may even not obtain a feasible solution in several hours). The theoretical properties are verified, and managerial insights regarding how input parameters affect system performance are provided through these numerical results. Additionally, results also reveal that, although the CA model does not incorporate vehicle repositioning decisions, the timetabling decisions obtained by solving the CA model can be easily applied to obtain near-optimal repositioning decisions (with gaps less than 5% in most instances) very efficiently (within 10 ms). Thus, the proposed CA model provides a foundation for developing solution approaches for other problems (e.g., MAV repositioning) with more complex system operation constraints whose exact optimal solution can hardly be found with discrete modeling methods.more » « less
- 
            Abstract. Although the concepts of nonuniform sampling (NUS) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago (Bodenhausen and Ernst, 1981; Barna and Laue, 1987), it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., “resolution”) or peaks of weak intensity (i.e., “sensitivity”). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the “Nonuniform Sampling Contest” (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
